Wednesday, October 24, 2012

Contour : looking for negatively curved domains

A contour was previously explored with the convexity defects  algorithm implemented in opencv. Some highly curved domains  failed to be detected because of the contour shape.
Curved domains missed by convexity defects detection

Using polygonal approximation imlemented in skimage 0.8 dev, positively curved domains as well as negatively curved domains on a contour can be sorted:
Contour of a chromosomes cluster (blue), polygonal approximation (yellow). Red points: positive curvature. Yellow points: negative curvature.

From a segmented particle, a polygonal approximation of the contour is extracted.
Points of the polygon are used to compute an angle between two consecutive vectors (Here using the complex affix of vectors):

Positive angles correspond to convex domains and negative angles to concave domains.



The code has to be modified to filter angles according to a given range. 

The code can be modified as follow to filter angles corresponding to curved domains:

  • positive = table[(135>table[:,2]) & (table[:,2]>45)]
  • negative = table[(-45>table[:,2]) & (table[:,2]>-135)]
Curved domains on polygonal approximation of a chromosomes cluster contour.

Download code



# -*- coding: utf-8 -*-
"""
Created on Tue Oct 23 08:06:37 2012
@author: Jean-Patrick
"""
import os
import numpy as np
import matplotlib.pyplot as plt
import skimage.io as sio
import skimage
import skimage.viewer as viewer
from skimage.draw import ellipse
from skimage.measure import find_contours, approximate_polygon, \
subdivide_polygon
import cmath
from math import pi
def addpixelborder(im):
x,y = im.shape
dy = np.zeros((y,))
im = np.vstack((im,dy))
im = np.vstack((dy,im))
im = np.transpose(im)
x,y = im.shape
dy = np.zeros((y,))
im = np.vstack((im,dy))
im = np.vstack((dy,im))
im = np.transpose(im)
return im
def angle(p1,p2,p3):
'''get the angle between the vectors p2p1,p2p3 with p a point
'''
z1=complex(p1[0],p1[1])
z2=complex(p2[0],p2[1])
z3=complex(p3[0],p3[1])
v12=z1-z2
v32=z3-z2
print v12,v32
angle=(180/pi)*cmath.phase(v32/v12)
return angle
def angleBetweenSegments(contour):
angles = []
points = list(contour)
points.pop()
#print 'contour in def',len(contour)
l = len(points)
for i in range(len(points)+1):
print 'i',i,' i-1',i-1,' (i+1)%l',(i+1)%l
prv_point=points[(i-1)%l]
mid_point=points[i % l]
nex_point=points[(i+1)%l]
angles.append(angle(prv_point,mid_point,nex_point))
return angles
user=os.path.expanduser("~")
workdir=os.path.join(user,"QFISH","JPPAnimal","JPP52","11","DAPI","particles")
image='part25.png'
complete_path=os.path.join(workdir,image)
#print complete_path
im = sio.imread(complete_path)
im = addpixelborder(im)
fig, ax1= plt.subplots(ncols=1, figsize=(9, 4))
contours = find_contours(im, 0.01)
print type(contours)
print len(contours)
p = subdivide_polygon(contours[0], degree=5, preserve_ends=True)
#print p
coord = approximate_polygon(p, tolerance=1.5)
coord2 = approximate_polygon(p, tolerance=2)
print coord2[-1]
print coord2[0]
print coord2[1]
print 'coord',type(coord2[0])
ax1.imshow(im, interpolation='nearest', cmap=plt.cm.gray)
#plt.imshow(im, interpolation='nearest')
contour0=contours[0]
pf=contours[-1]
print 'contc',contour0[0]
angles = angleBetweenSegments(coord2)
table = np.array([coord2[0][0],coord2[0][1],angles[0]])
for i in range(len(angles[1:])):
current = np.array([coord2[i][0],coord2[i][1],angles[i]])
table = np.vstack((table,current))
positive = table[table[:,2]>0]
negative = table[table[:,2]<0]
for n, contour in enumerate(contours):
ax1.plot(contour[:, 1], contour[:, 0], linewidth=4)
ax1.plot(coord[:, 1], coord[:, 0], linewidth=1, color='r')
ax1.plot(coord2[:, 1], coord2[:, 0], linewidth=1, color='y')
ax1.scatter(contour0[0][1],contour0[0][0],s=150, c='m',marker='o')
ax1.scatter(pf[0][1],pf[0][0],s=150, c='y',marker='*')
for i in range(positive.shape[0]):
ax1.scatter(positive[i][1], positive[i][0], s=200, c='r')
for i in range(negative.shape[0]):
ax1.scatter(negative[i][1], negative[i][0], s=200, c='y')
plt.show()
#
#views = viewer.CollectionViewer((im))
#views.show()

No comments: