A contour was previously explored with the convexity defects algorithm
implemented in opencv. Some highly curved domains failed to be detected
because of the contour shape.
Using polygonal approximation imlemented in skimage 0.8 dev, positively curved domains as well as negatively curved domains on a contour can be sorted:
![]() |
Curved domains missed by convexity defects detection |
Using polygonal approximation imlemented in skimage 0.8 dev, positively curved domains as well as negatively curved domains on a contour can be sorted:
![]() |
Contour of a chromosomes cluster (blue), polygonal approximation (yellow). Red points: positive curvature. Yellow points: negative curvature. |
From a segmented particle, a polygonal approximation of the contour is extracted.
Points of the polygon are used to compute an angle between two consecutive vectors (Here using the complex affix of vectors):
Positive angles correspond to convex domains and negative angles to concave domains.
The code can be modified as follow to filter angles corresponding to curved domains:
- positive = table[(135>table[:,2]) & (table[:,2]>45)]
- negative = table[(-45>table[:,2]) & (table[:,2]>-135)]
![]() |
Curved domains on polygonal approximation of a chromosomes cluster contour. |
Download code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Tue Oct 23 08:06:37 2012 | |
@author: Jean-Patrick | |
""" | |
import os | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import skimage.io as sio | |
import skimage | |
import skimage.viewer as viewer | |
from skimage.draw import ellipse | |
from skimage.measure import find_contours, approximate_polygon, \ | |
subdivide_polygon | |
import cmath | |
from math import pi | |
def addpixelborder(im): | |
x,y = im.shape | |
dy = np.zeros((y,)) | |
im = np.vstack((im,dy)) | |
im = np.vstack((dy,im)) | |
im = np.transpose(im) | |
x,y = im.shape | |
dy = np.zeros((y,)) | |
im = np.vstack((im,dy)) | |
im = np.vstack((dy,im)) | |
im = np.transpose(im) | |
return im | |
def angle(p1,p2,p3): | |
'''get the angle between the vectors p2p1,p2p3 with p a point | |
''' | |
z1=complex(p1[0],p1[1]) | |
z2=complex(p2[0],p2[1]) | |
z3=complex(p3[0],p3[1]) | |
v12=z1-z2 | |
v32=z3-z2 | |
print v12,v32 | |
angle=(180/pi)*cmath.phase(v32/v12) | |
return angle | |
def angleBetweenSegments(contour): | |
angles = [] | |
points = list(contour) | |
points.pop() | |
#print 'contour in def',len(contour) | |
l = len(points) | |
for i in range(len(points)+1): | |
print 'i',i,' i-1',i-1,' (i+1)%l',(i+1)%l | |
prv_point=points[(i-1)%l] | |
mid_point=points[i % l] | |
nex_point=points[(i+1)%l] | |
angles.append(angle(prv_point,mid_point,nex_point)) | |
return angles | |
user=os.path.expanduser("~") | |
workdir=os.path.join(user,"QFISH","JPPAnimal","JPP52","11","DAPI","particles") | |
image='part25.png' | |
complete_path=os.path.join(workdir,image) | |
#print complete_path | |
im = sio.imread(complete_path) | |
im = addpixelborder(im) | |
fig, ax1= plt.subplots(ncols=1, figsize=(9, 4)) | |
contours = find_contours(im, 0.01) | |
print type(contours) | |
print len(contours) | |
p = subdivide_polygon(contours[0], degree=5, preserve_ends=True) | |
#print p | |
coord = approximate_polygon(p, tolerance=1.5) | |
coord2 = approximate_polygon(p, tolerance=2) | |
print coord2[-1] | |
print coord2[0] | |
print coord2[1] | |
print 'coord',type(coord2[0]) | |
ax1.imshow(im, interpolation='nearest', cmap=plt.cm.gray) | |
#plt.imshow(im, interpolation='nearest') | |
contour0=contours[0] | |
pf=contours[-1] | |
print 'contc',contour0[0] | |
angles = angleBetweenSegments(coord2) | |
table = np.array([coord2[0][0],coord2[0][1],angles[0]]) | |
for i in range(len(angles[1:])): | |
current = np.array([coord2[i][0],coord2[i][1],angles[i]]) | |
table = np.vstack((table,current)) | |
positive = table[table[:,2]>0] | |
negative = table[table[:,2]<0] | |
for n, contour in enumerate(contours): | |
ax1.plot(contour[:, 1], contour[:, 0], linewidth=4) | |
ax1.plot(coord[:, 1], coord[:, 0], linewidth=1, color='r') | |
ax1.plot(coord2[:, 1], coord2[:, 0], linewidth=1, color='y') | |
ax1.scatter(contour0[0][1],contour0[0][0],s=150, c='m',marker='o') | |
ax1.scatter(pf[0][1],pf[0][0],s=150, c='y',marker='*') | |
for i in range(positive.shape[0]): | |
ax1.scatter(positive[i][1], positive[i][0], s=200, c='r') | |
for i in range(negative.shape[0]): | |
ax1.scatter(negative[i][1], negative[i][0], s=200, c='y') | |
plt.show() | |
# | |
#views = viewer.CollectionViewer((im)) | |
#views.show() |
No comments:
Post a Comment